# [A1] - Brute Force

Time: O(n^2)

Space: O(n^2)

```
class Solution:
def generate(self, numRows: int) -> List[List[int]]:
# Initialize the triangle with the first row
pascal_triangle = []
for i in range(numRows):
# Start each row with a list
row = [1] * (i + 1) # Every row starts with 1s
# Fill in the interior values
for j in range(1, i):
row[j] = pascal_triangle[i - 1][j - 1] + pascal_triangle[i - 1][j]
# Append the completed row to the triangle
pascal_triangle.append(row)
return pascal_triangle
```

**What this code does:**

Solution

**class**: It defines a class that co ntains a method for generating Pascal’s Triangle.generate

**method**: This method takes an integer numRows as input, representing the number of rows in Pascal’s Triangle to generate.Initializes an empty list called

`pascal_triangle`

that will hold all rows of Pascal’s Triangle.Uses a loop to iterate over the range of numRows to generate each row of the triangle.

Each row is initialized with 1s using

`[1] * (i + 1)`

.For rows beyond the second, the interior values (non-1s) are calculated using values from the previous row:

`pascal_triangle[i - 1][j - 1] + pascal_triangle[i - 1][j]`

.After completing a row, it appends the row to the

`pascal_triangle`

list.Finally, the

`pascal_triangle`

is returned.